Internet Group Management Protocol, Version 3

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

This document specifies Version 3 of the Internet Group Management Protocol, IGMPv3. IGMP is the protocol used by IPv4 systems to report their IP multicast group memberships to neighboring multicast routers. Version 3 of IGMP adds support for "source filtering", that is, the ability for a system to report interest in receiving packets *only* from specific source addresses, or from *all but* specific source addresses, sent to a particular multicast address. That information may be used by multicast routing protocols to avoid delivering multicast packets from specific sources to networks where there are no interested receivers.

This document obsoletes RFC 2236.
1. Introduction

The Internet Group Management Protocol (IGMP) is used by IPv4 systems (hosts and routers) to report their IP multicast group memberships to any neighboring multicast routers. Note that an IP multicast router may itself be a member of one or more multicast groups, in which case it performs both the "multicast router part" of the protocol (to collect the membership information needed by its multicast routing protocol) and the "group member part" of the protocol (to inform itself and other, neighboring multicast routers of its memberships).

IGMP is also used for other IP multicast management functions, using message types other than those used for group membership reporting. This document specifies only the group membership reporting functions and messages.

This document specifies Version 3 of IGMP. Version 1, specified in [RFC-1112], was the first widely-deployed version and the first version to become an Internet Standard. Version 2, specified in [RFC-2236], added support for "low leave latency", that is, a reduction in the time it takes for a multicast router to learn that there are no longer any members of a particular group present on an attached network. Version 3 adds support for "source filtering", that is, the ability for a system to report interest in receiving packets *only* from specific source addresses, as required to support Source-Specific Multicast [SSM], or from *all but* specific source addresses, sent to a particular multicast address. Version 3 is designed to be interoperable with Versions 1 and 2.
Multicast Listener Discovery (MLD) is used in a similar way by IPv6 systems. MLD version 1 [MLD] implements the functionality of IGMP version 2; MLD version 2 [MLDv2] implements the functionality of IGMP version 3.

The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC-2119]. Due to the lack of italics, emphasis is indicated herein by bracketing a word or phrase in "*" characters.

2. The Service Interface for Requesting IP Multicast Reception

Within an IP system, there is (at least conceptually) a service interface used by upper-layer protocols or application programs to ask the IP layer to enable and disable reception of packets sent to specific IP multicast addresses. In order to take full advantage of the capabilities of IGMPv3, a system’s IP service interface must support the following operation:

\[
\text{IPMulticastListen (socket, interface, multicast-address, filter-mode, source-list)}
\]

where:

- "socket" is an implementation-specific parameter used to distinguish among different requesting entities (e.g., programs or processes) within the system; the socket parameter of BSD Unix system calls is a specific example.

- "interface" is a local identifier of the network interface on which reception of the specified multicast address is to be enabled or disabled. Interfaces may be physical (e.g., an Ethernet interface) or virtual (e.g., the endpoint of a Frame Relay virtual circuit or the endpoint of an IP-in-IP "tunnel"). An implementation may allow a special "unspecified" value to be passed as the interface parameter, in which case the request would apply to the "primary" or "default" interface of the system (perhaps established by system configuration). If reception of the same multicast address is desired on more than one interface, IPMulticastListen is invoked separately for each desired interface.

- "multicast-address" is the IP multicast address, or group, to which the request pertains. If reception of more than one multicast address on a given interface is desired, IPMulticastListen is invoked separately for each desired multicast address.
"filter-mode" may be either INCLUDE or EXCLUDE. In INCLUDE mode, reception of packets sent to the specified multicast address is requested *only* from those IP source addresses listed in the source-list parameter. In EXCLUDE mode, reception of packets sent to the given multicast address is requested from all IP source addresses *except* those listed in the source-list parameter.

"source-list" is an unordered list of zero or more IP unicast addresses from which multicast reception is desired or not desired, depending on the filter mode. An implementation MAY impose a limit on the size of source lists, but that limit MUST NOT be less than 64 addresses per list. When an operation causes the source list size limit to be exceeded, the service interface MUST return an error.

For a given combination of socket, interface, and multicast address, only a single filter mode and source list can be in effect at any one time. However, either the filter mode or the source list, or both, may be changed by subsequent IPMulticastListen requests that specify the same socket, interface, and multicast address. Each subsequent request completely replaces any earlier request for the given socket, interface and multicast address.

Previous versions of IGMP did not support source filters and had a simpler service interface consisting of Join and Leave operations to enable and disable reception of a given multicast address (from *all* sources) on a given interface. The equivalent operations in the new service interface follow:

The Join operation is equivalent to

```
IPMulticastListen ( socket, interface, multicast-address,
    EXCLUDE, {})
```

and the Leave operation is equivalent to:

```
IPMulticastListen ( socket, interface, multicast-address,
    INCLUDE, {})
```

where {} is an empty source list.

An example of an API providing the capabilities outlined in this service interface is in [FILTER-API].
3. Multicast Reception State Maintained by Systems

3.1. Socket State

For each socket on which IPMulticastListen has been invoked, the system records the desired multicast reception state for that socket. That state conceptually consists of a set of records of the form:

(interface, multicast-address, filter-mode, source-list)

The socket state evolves in response to each invocation of IPMulticastListen on the socket, as follows:

- If the requested filter mode is INCLUDE *and* the requested source list is empty, then the entry corresponding to the requested interface and multicast address is deleted if present. If no such entry is present, the request is ignored.

- If the requested filter mode is EXCLUDE *or* the requested source list is non-empty, then the entry corresponding to the requested interface and multicast address, if present, is changed to contain the requested filter mode and source list. If no such entry is present, a new entry is created, using the parameters specified in the request.

3.2. Interface State

In addition to the per-socket multicast reception state, a system must also maintain or compute multicast reception state for each of its interfaces. That state conceptually consists of a set of records of the form:

(multicast-address, filter-mode, source-list)

At most one record per multicast-address exists for a given interface. This per-interface state is derived from the per-socket state, but may differ from the per-socket state when different sockets have differing filter modes and/or source lists for the same multicast address and interface. For example, suppose one application or process invokes the following operation on socket s1:

IPMulticastListen (s1, i, m, INCLUDE, {a, b, c})

requesting reception on interface i of packets sent to multicast address m, *only* if they come from source a, b, or c. Suppose another application or process invokes the following operation on socket s2:
IPMulticastListen (s2, i, m, INCLUDE, {b, c, d})

requesting reception on the same interface i of packets sent to the
same multicast address m, *only* if they come from sources b, c, or
d. In order to satisfy the reception requirements of both sockets,
it is necessary for interface i to receive packets sent to m from
any one of the sources a, b, c, or d. Thus, in this example, the
reception state of interface i for multicast address m has filter
mode INCLUDE and source list {a, b, c, d}.

After a multicast packet has been accepted from an interface by the
IP layer, its subsequent delivery to the application or process
listening on a particular socket depends on the multicast reception
state of that socket [and possibly also on other conditions, such
as what transport-layer port the socket is bound to]. So, in the
above example, if a packet arrives on interface i, destined to
multicast address m, with source address a, it will be delivered on
socket s1 but not on socket s2. Note that IGMP Queries and Reports
are not subject to source filtering and must always be processed by
hosts and routers.

Filtering of packets based upon a socket’s multicast reception
state is a new feature of this service interface. The previous
service interface [RFC1112] described no filtering based upon
multicast join state; rather, a join on a socket simply caused the
host to join a group on the given interface, and packets destined
for that group could be delivered to all sockets whether they had
joined or not.

The general rules for deriving the per-interface state from the
per-socket state are as follows: For each distinct (interface,
multicast-address) pair that appears in any socket state, a per-
interface record is created for that multicast address on that
interface. Considering all socket records containing the same
(interface, multicast-address) pair,

- if *any* such record has a filter mode of EXCLUDE, then the filter
 mode of the interface record is EXCLUDE, and the source list of the
 interface record is the intersection of the source lists of all
 socket records in EXCLUDE mode, minus those source addresses that
 appear in any socket record in INCLUDE mode. For example, if the
 socket records for multicast address m on interface i are:

 from socket s1: (i, m, EXCLUDE, {a, b, c, d})
 from socket s2: (i, m, EXCLUDE, {b, c, d, e})
 from socket s3: (i, m, INCLUDE, {d, e, f})

 o if *any* such record has a filter mode of EXCLUDE, then the filter
 mode of the interface record is EXCLUDE, and the source list of the
 interface record is the intersection of the source lists of all
 socket records in EXCLUDE mode, minus those source addresses that
 appear in any socket record in INCLUDE mode. For example, if the
 socket records for multicast address m on interface i are:
then the corresponding interface record on interface i is:

\[(m, \text{EXCLUDE}, \{b, c\}) \]

If a fourth socket is added, such as:

from socket s4: \((i, m, \text{EXCLUDE}, \{\}) \)

then the interface record becomes:

\[(m, \text{EXCLUDE}, \{\}) \]

o if *all* such records have a filter mode of INCLUDE, then the
filter mode of the interface record is INCLUDE, and the source list
of the interface record is the union of the source lists of all the
socket records. For example, if the socket records for multicast
address m on interface i are:

from socket s1: \((i, m, \text{INCLUDE}, \{a, b, c\}) \)
from socket s2: \((i, m, \text{INCLUDE}, \{b, c, d\}) \)
from socket s3: \((i, m, \text{INCLUDE}, \{e, f\}) \)

then the corresponding interface record on interface i is:

\[(m, \text{INCLUDE}, \{a, b, c, d, e, f\}) \]

An implementation MUST NOT use an EXCLUDE interface record to
represent a group when all sockets for this group are in INCLUDE
state. If system resource limits are reached when an interface
state source list is calculated, an error MUST be returned to the
application which requested the operation.

The above rules for deriving the interface state are (re-)evaluated
whenever an IPMulticastListen invocation modifies the socket state by
adding, deleting, or modifying a per-socket state record. Note that
a change of socket state does not necessarily result in a change of
interface state.

4. Message Formats

IGMP messages are encapsulated in IPv4 datagrams, with an IP protocol
number of 2. Every IGMP message described in this document is sent
with an IP Time-to-Live of 1, IP Precedence of Internetwork Control
(e.g., Type of Service 0xc0), and carries an IP Router Alert option
[RFC-2113] in its IP header. IGMP message types are registered by
the IANA [IANA-REG] as described by [RFC-3228].
There are two IGMP message types of concern to the IGMPv3 protocol described in this document:

<table>
<thead>
<tr>
<th>Type Number (hex)</th>
<th>Message Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11</td>
<td>Membership Query</td>
</tr>
<tr>
<td>0x22</td>
<td>Version 3 Membership Report</td>
</tr>
</tbody>
</table>

An implementation of IGMPv3 MUST also support the following three message types, for interoperation with previous versions of IGMP (see section 7):

- 0x12 Version 1 Membership Report [RFC-1112]
- 0x16 Version 2 Membership Report [RFC-2236]
- 0x17 Version 2 Leave Group [RFC-2236]

Unrecognized message types MUST be silently ignored. Other message types may be used by newer versions or extensions of IGMP, by multicast routing protocols, or for other uses.

In this document, unless otherwise qualified, the capitalized words "Query" and "Report" refer to IGMP Membership Queries and IGMP Version 3 Membership Reports, respectively.

4.1. Membership Query Message

Membership Queries are sent by IP multicast routers to query the multicast reception state of neighboring interfaces. Queries have the following format:
4.1.1. Max Resp Code

The Max Resp Code field specifies the maximum time allowed before sending a responding report. The actual time allowed, called the Max Resp Time, is represented in units of 1/10 second and is derived from the Max Resp Code as follows:

If Max Resp Code < 128, Max Resp Time = Max Resp Code

If Max Resp Code >= 128, Max Resp Code represents a floating-point value as follows:

\[
\begin{align*}
0 & 1 2 3 4 5 6 7 & \text{(mant)} & 0 x 10 \text{ << (exp + 3)} \\
\text{exp} & \text{mant} & & \\
\end{align*}
\]

Max Resp Time = (mant | 0x10) << (exp + 3)

Small values of Max Resp Time allow IGMPv3 routers to tune the "leave latency" (the time between the moment the last host leaves a group and the moment the routing protocol is notified that there are no more members). Larger values, especially in the exponential range, allow tuning of the burstiness of IGMP traffic on a network.
4.1.2. Checksum

The Checksum is the 16-bit one’s complement of the one’s complement sum of the whole IGMP message (the entire IP payload). For computing the checksum, the Checksum field is set to zero. When receiving packets, the checksum MUST be verified before processing a packet. [RFC-1071]

4.1.3. Group Address

The Group Address field is set to zero when sending a General Query, and set to the IP multicast address being queried when sending a Group-Specific Query or Group-and-Source-Specific Query (see section 4.1.9, below).

4.1.4. Resv (Reserved)

The Resv field is set to zero on transmission, and ignored on reception.

4.1.5. S Flag (Suppress Router-Side Processing)

When set to one, the S Flag indicates to any receiving multicast routers that they are to suppress the normal timer updates they perform upon hearing a Query. It does not, however, suppress the querier election or the normal "host-side" processing of a Query that a router may be required to perform as a consequence of itself being a group member.

4.1.6. QRV (Querier’s Robustness Variable)

If non-zero, the QRV field contains the [Robustness Variable] value used by the querier, i.e., the sender of the Query. If the querier’s [Robustness Variable] exceeds 7, the maximum value of the QRV field, the QRV is set to zero. Routers adopt the QRV value from the most recently received Query as their own [Robustness Variable] value, unless that most recently received QRV was zero, in which case the receivers use the default [Robustness Variable] value specified in section 8.1 or a statically configured value.

4.1.7. QQIC (Querier’s Query Interval Code)

The Querier’s Query Interval Code field specifies the [Query Interval] used by the querier. The actual interval, called the Querier’s Query Interval (QQI), is represented in units of seconds and is derived from the Querier’s Query Interval Code as follows:
If \(QQIC < 128 \), \(QQI = QQIC \)

If \(QQIC \geq 128 \), \(QQIC \) represents a floating-point value as follows:

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
+ & + & + & + & + & + & + & +
\end{array}
\]

\[
\begin{array}{c|c|c}
1 & \text{exp} & \text{mant} \\
+ & + & + & + & + & + & + & +
\end{array}
\]

\[QQI = (\text{mant} \mid 0x10) \ll (\text{exp} + 3) \]

Multicast routers that are not the current querier adopt the \(QQI \) value from the most recently received Query as their own [Query Interval] value, unless that most recently received \(QQI \) was zero, in which case the receiving routers use the default [Query Interval] value specified in section 8.2.

4.1.8. Number of Sources (N)

The Number of Sources (N) field specifies how many source addresses are present in the Query. This number is zero in a General Query or a Group-Specific Query, and non-zero in a Group-and-Source-Specific Query. This number is limited by the MTU of the network over which the Query is transmitted. For example, on an Ethernet with an MTU of 1500 octets, the IP header including the Router Alert option consumes 24 octets, and the IGMP fields up to including the Number of Sources (N) field consume 12 octets, leaving 1464 octets for source addresses, which limits the number of source addresses to 366 (1464/4).

4.1.9. Source Address [i]

The Source Address [i] fields are a vector of \(n \) IP unicast addresses, where \(n \) is the value in the Number of Sources (N) field.

4.1.10. Additional Data

If the Packet Length field in the IP header of a received Query indicates that there are additional octets of data present, beyond the fields described here, IGMPv3 implementations MUST include those octets in the computation to verify the received IGMP Checksum, but MUST otherwise ignore those additional octets. When sending a Query, an IGMPv3 implementation MUST NOT include additional octets beyond the fields described here.
4.1.11. Query Variants

There are three variants of the Query message:

1. A "General Query" is sent by a multicast router to learn the complete multicast reception state of the neighboring interfaces (that is, the interfaces attached to the network on which the Query is transmitted). In a General Query, both the Group Address field and the Number of Sources (N) field are zero.

2. A "Group-Specific Query" is sent by a multicast router to learn the reception state, with respect to a *single* multicast address, of the neighboring interfaces. In a Group-Specific Query, the Group Address field contains the multicast address of interest, and the Number of Sources (N) field contains zero.

3. A "Group-and-Source-Specific Query" is sent by a multicast router to learn if any neighboring interface desires reception of packets sent to a specified multicast address, from any of a specified list of sources. In a Group-and-Source-Specific Query, the Group Address field contains the multicast address of interest, and the Source Address [i] fields contain the source address(es) of interest.

4.1.12. IP Destination Addresses for Queries

In IGMPv3, General Queries are sent with an IP destination address of 224.0.0.1, the all-systems multicast address. Group-Specific and Group-and-Source-Specific Queries are sent with an IP destination address equal to the multicast address of interest. *However*, a system MUST accept and process any Query whose IP Destination Address field contains *any* of the addresses (unicast or multicast) assigned to the interface on which the Query arrives.

4.2. Version 3 Membership Report Message

Version 3 Membership Reports are sent by IP systems to report (to neighboring routers) the current multicast reception state, or changes in the multicast reception state, of their interfaces. Reports have the following format:
<table>
<thead>
<tr>
<th>Type = 0x22</th>
<th>Reserved</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>Number of Group Records (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group Record [1]

Group Record [2]

Group Record [M]

Cain, et. al. Standards Track [Page 13]
where each Group Record has the following internal format:

```
+---------------------------------------------+-
|   Record Type   | Aux Data Len | Number of Sources (N) |
+---------------------------------------------+-
|                                           | Multicast Address |
+---------------------------------------------+-
|                                               | Source Address [1] |
+-                                           +-                     
|                                           | Source Address [2] |
+-                                           +-                     
|                                           | .                         |
|                                           | .                         |
|                                           | .                         |
|                                           | .                         |
+-                                           +-                     
|                                           | Source Address [N] |
+---------------------------------------------+-
|                                               |                      |
|                                           | Auxiliary Data      |
|                                           |                      |
+-                                           +-                     
+---------------------------------------------+-
```

4.2.1. Reserved

The Reserved fields are set to zero on transmission, and ignored on reception.

4.2.2. Checksum

The Checksum is the 16-bit one’s complement of the one’s complement sum of the whole IGMP message (the entire IP payload). For computing the checksum, the Checksum field is set to zero. When receiving packets, the checksum MUST be verified before processing a message.

4.2.3. Number of Group Records (M)

The Number of Group Records (M) field specifies how many Group Records are present in this Report.

4.2.4. Group Record

Each Group Record is a block of fields containing information pertaining to the sender’s membership in a single multicast group on the interface from which the Report is sent.
4.2.5. Record Type

See section 4.2.12, below.

4.2.6. Aux Data Len

The Aux Data Len field contains the length of the Auxiliary Data field in this Group Record, in units of 32-bit words. It may contain zero, to indicate the absence of any auxiliary data.

4.2.7. Number of Sources (N)

The Number of Sources (N) field specifies how many source addresses are present in this Group Record.

4.2.8. Multicast Address

The Multicast Address field contains the IP multicast address to which this Group Record pertains.

4.2.9. Source Address [i]

The Source Address [i] fields are a vector of n IP unicast addresses, where n is the value in this record’s Number of Sources (N) field.

4.2.10. Auxiliary Data

The Auxiliary Data field, if present, contains additional information pertaining to this Group Record. The protocol specified in this document, IGMPv3, does not define any auxiliary data. Therefore, implementations of IGMPv3 MUST NOT include any auxiliary data (i.e., MUST set the Aux Data Len field to zero) in any transmitted Group Record, and MUST ignore any auxiliary data present in any received Group Record. The semantics and internal encoding of the Auxiliary Data field are to be defined by any future version or extension of IGMP that uses this field.

4.2.11. Additional Data

If the Packet Length field in the IP header of a received Report indicates that there are additional octets of data present, beyond the last Group Record, IGMPv3 implementations MUST include those octets in the computation to verify the received IGMP Checksum, but MUST otherwise ignore those additional octets. When sending a Report, an IGMPv3 implementation MUST NOT include additional octets beyond the last Group Record.
4.2.12. Group Record Types

There are a number of different types of Group Records that may be included in a Report message:

- A "Current-State Record" is sent by a system in response to a Query received on an interface. It reports the current reception state of that interface, with respect to a single multicast address. The Record Type of a Current-State Record may be one of the following two values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Name and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MODE_IS_INCLUDE - indicates that the interface has a filter mode of INCLUDE for the specified multicast address. The Source Address [i] fields in this Group Record contain the interface’s source list for the specified multicast address, if it is non-empty.</td>
</tr>
<tr>
<td>2</td>
<td>MODE_IS_EXCLUDE - indicates that the interface has a filter mode of EXCLUDE for the specified multicast address. The Source Address [i] fields in this Group Record contain the interface’s source list for the specified multicast address, if it is non-empty.</td>
</tr>
</tbody>
</table>

- A "Filter-Mode-Change Record" is sent by a system whenever a local invocation of IPMulticastListen causes a change of the filter mode (i.e., a change from INCLUDE to EXCLUDE, or from EXCLUDE to INCLUDE), of the interface-level state entry for a particular multicast address. The Record is included in a Report sent from the interface on which the change occurred. The Record Type of a Filter-Mode-Change Record may be one of the following two values:

<table>
<thead>
<tr>
<th>Value</th>
<th>Name and Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>CHANGE_TO_INCLUDE_MODE - indicates that the interface has changed to INCLUDE filter mode for the specified multicast address. The Source Address [i] fields in this Group Record contain the interface’s new source list for the specified multicast address, if it is non-empty.</td>
</tr>
<tr>
<td>4</td>
<td>CHANGE_TO_EXCLUDE_MODE - indicates that the interface has changed to EXCLUDE filter mode for the specified multicast address. The Source Address [i] fields in this Group Record contain the interface’s new source list for the specified multicast address, if it is non-empty.</td>
</tr>
</tbody>
</table>
A "Source-List-Change Record" is sent by a system whenever a local invocation of IPMulticastListen causes a change of source list that is *not* coincident with a change of filter mode, of the interface-level state entry for a particular multicast address. The Record is included in a Report sent from the interface on which the change occurred. The Record Type of a Source-List-Change Record may be one of the following two values:

5 ALLOW_NEW_SOURCES - indicates that the Source Address [i] fields in this Group Record contain a list of the additional sources that the system wishes to hear from, for packets sent to the specified multicast address. If the change was to an INCLUDE source list, these are the addresses that were added to the list; if the change was to an EXCLUDE source list, these are the addresses that were deleted from the list.

6 BLOCK_OLD_SOURCES - indicates that the Source Address [i] fields in this Group Record contain a list of the sources that the system no longer wishes to hear from, for packets sent to the specified multicast address. If the change was to an INCLUDE source list, these are the addresses that were deleted from the list; if the change was to an EXCLUDE source list, these are the addresses that were added to the list.

If a change of source list results in both allowing new sources and blocking old sources, then two Group Records are sent for the same multicast address, one of type ALLOW_NEW_SOURCES and one of type BLOCK_OLD_SOURCES.

We use the term "State-Change Record" to refer to either a Filter-Mode-Change Record or a Source-List-Change Record.

Unrecognized Record Type values MUST be silently ignored.

4.2.13. IP Source Addresses for Reports

An IGMP report is sent with a valid IP source address for the destination subnet. The 0.0.0.0 source address may be used by a system that has not yet acquired an IP address. Note that the 0.0.0.0 source address may simultaneously be used by multiple systems on a LAN. Routers MUST accept a report with a source address of 0.0.0.0.
4.2.14. IP Destination Addresses for Reports

Version 3 Reports are sent with an IP destination address of 224.0.0.22, to which all IGMPv3-capable multicast routers listen. A system that is operating in version 1 or version 2 compatibility modes sends version 1 or version 2 Reports to the multicast group specified in the Group Address field of the Report. In addition, a system MUST accept and process any version 1 or version 2 Report whose IP Destination Address field contains *any* of the addresses (unicast or multicast) assigned to the interface on which the Report arrives.

4.2.15. Notation for Group Records

In the rest of this document, we use the following notation to describe the contents of a Group Record pertaining to a particular multicast address:

- IS_IN (x) - Type MODE_IS_INCLUDE, source addresses x
- IS_EX (x) - Type MODE_IS_EXCLUDE, source addresses x
- TO_IN (x) - Type CHANGE_TO_INCLUDE_MODE, source addresses x
- TO_EX (x) - Type CHANGE_TO_EXCLUDE_MODE, source addresses x
- ALLOW (x) - Type ALLOW_NEW_SOURCES, source addresses x
- BLOCK (x) - Type BLOCK_OLD_SOURCES, source addresses x

where x is either:

- a capital letter (e.g., "A") to represent the set of source addresses, or
- a set expression (e.g., "A+B"), where "A+B" means the union of sets A and B, "A*B" means the intersection of sets A and B, and "A-B" means the removal of all elements of set B from set A.

4.2.16. Membership Report Size

If the set of Group Records required in a Report does not fit within the size limit of a single Report message (as determined by the MTU of the network on which it will be sent), the Group Records are sent in as many Report messages as needed to report the entire set.

If a single Group Record contains so many source addresses that it does not fit within the size limit of a single Report message, if its Type is not MODE_IS_EXCLUDE or CHANGE_TO_EXCLUDE_MODE, it is split into multiple Group Records, each containing a different subset of the source addresses and each sent in a separate Report message. If its Type is MODE_IS_EXCLUDE or CHANGE_TO_EXCLUDE_MODE, a single Group Record is sent, containing as many source addresses as can fit, and
the remaining source addresses are not reported; though the choice of which sources to report is arbitrary, it is preferable to report the same set of sources in each subsequent report, rather than reporting different sources each time.

5. Description of the Protocol for Group Members

IGMP is an asymmetric protocol, specifying separate behaviors for group members -- that is, hosts or routers that wish to receive multicast packets -- and multicast routers. This section describes the part of IGMPv3 that applies to all group members. (Note that a multicast router that is also a group member performs both parts of IGMPv3, receiving and responding to its own IGMP message transmissions as well as those of its neighbors. The multicast router part of IGMPv3 is described in section 6.)

A system performs the protocol described in this section over all interfaces on which multicast reception is supported, even if more than one of those interfaces is connected to the same network.

For interoperability with multicast routers running older versions of IGMP, systems maintain a MulticastRouterVersion variable for each interface on which multicast reception is supported. This section describes the behavior of group member systems on interfaces for which MulticastRouterVersion = 3. The algorithm for determining MulticastRouterVersion, and the behavior for versions other than 3, are described in section 7.

The all-systems multicast address, 224.0.0.1, is handled as a special case. On all systems -- that is all hosts and routers, including multicast routers -- reception of packets destined to the all-systems multicast address, from all sources, is permanently enabled on all interfaces on which multicast reception is supported. No IGMP messages are ever sent regarding the all-systems multicast address.

There are two types of events that trigger IGMPv3 protocol actions on an interface:

- a change of the interface reception state, caused by a local invocation of IPMulticastListen.

- reception of a Query.

(Received IGMP messages of types other than Query are silently ignored, except as required for interoperation with earlier versions of IGMP.)
The following subsections describe the actions to be taken for each of these two cases. In those descriptions, timer and counter names appear in square brackets. The default values for those timers and counters are specified in section 8.

5.1. Action on Change of Interface State

An invocation of IPMulticastListen may cause the multicast reception state of an interface to change, according to the rules in section 3.2. Each such change affects the per-interface entry for a single multicast address.

A change of interface state causes the system to immediately transmit a State-Change Report from that interface. The type and contents of the Group Record(s) in that Report are determined by comparing the filter mode and source list for the affected multicast address before and after the change, according to the table below. If no interface state existed for that multicast address before the change (i.e., the change consisted of creating a new per-interface record), or if no state exists after the change (i.e., the change consisted of deleting a per-interface record), then the "non-existent" state is considered to have a filter mode of INCLUDE and an empty source list.

<table>
<thead>
<tr>
<th>Old State</th>
<th>New State</th>
<th>State-Change Record Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDE (A)</td>
<td>INCLUDE (B)</td>
<td>ALLOW (B-A), BLOCK (A-B)</td>
</tr>
<tr>
<td>EXCLUDE (A)</td>
<td>EXCLUDE (B)</td>
<td>ALLOW (A-B), BLOCK (B-A)</td>
</tr>
<tr>
<td>INCLUDE (A)</td>
<td>EXCLUDE (B)</td>
<td>TO_EX (B)</td>
</tr>
<tr>
<td>EXCLUDE (A)</td>
<td>INCLUDE (B)</td>
<td>TO_IN (B)</td>
</tr>
</tbody>
</table>

If the computed source list for either an ALLOW or a BLOCK State-Change Record is empty, that record is omitted from the Report message.

To cover the possibility of the State-Change Report being missed by one or more multicast routers, it is retransmitted [Robustness Variable] - 1 more times, at intervals chosen at random from the range (0, [Unsolicited Report Interval]).

If more changes to the same interface state entry occur before all the retransmissions of the State-Change Report for the first change have been completed, each such additional change triggers the immediate transmission of a new State-Change Report.
The contents of the new transmitted report are calculated as follows. As was done with the first report, the interface state for the affected group before and after the latest change is compared. The report records expressing the difference are built according to the table above. However these records are not transmitted in a message but instead merged with the contents of the pending report, to create the new State-Change report. The rules for merging the difference report resulting from the state change and the pending report are described below.

The transmission of the merged State-Change Report terminates retransmissions of the earlier State-Change Reports for the same multicast address, and becomes the first of [Robustness Variable] transmissions of State-Change Reports.

Each time a source is included in the difference report calculated above, retransmission state for that source needs to be maintained until [Robustness Variable] State-Change reports have been sent by the host. This is done in order to ensure that a series of successive state changes do not break the protocol robustness.

If the interface reception-state change that triggers the new report is a filter-mode change, then the next [Robustness Variable] State-Change Reports will include a Filter-Mode-Change record. This applies even if any number of source-list changes occur in that period. The host has to maintain retransmission state for the group until the [Robustness Variable] State-Change reports have been sent. When [Robustness Variable] State-Change reports with Filter-Mode-Change records have been transmitted after the last filter-mode change, and if source-list changes to the interface reception have scheduled additional reports, then the next State-Change report will include Source-List-Change records.

Each time a State-Change Report is transmitted, the contents are determined as follows. If the report should contain a Filter-Mode-Change record, then if the current filter-mode of the interface is INCLUDE, a TO_IN record is included in the report, otherwise a TO_EX record is included. If instead the report should contain Source-List-Change records, an ALLOW and a BLOCK record are included. The contents of these records are built according to the table below.

<table>
<thead>
<tr>
<th>Record</th>
<th>Sources included</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO_IN</td>
<td>All in the current interface state that must be forwarded</td>
</tr>
<tr>
<td>TO_EX</td>
<td>All in the current interface state that must be blocked</td>
</tr>
<tr>
<td>ALLOW</td>
<td>All with retransmission state that must be forwarded</td>
</tr>
<tr>
<td>BLOCK</td>
<td>All with retransmission state that must be blocked</td>
</tr>
</tbody>
</table>
If the computed source list for either an ALLOW or a BLOCK record is empty, that record is omitted from the State-Change report.

Note: When the first State-Change report is sent, the non-existent pending report to merge with, can be treated as a source-change report with empty ALLOW and BLOCK records (no sources have retransmission state).

5.2. Action on Reception of a Query

When a system receives a Query, it does not respond immediately. Instead, it delays its response by a random amount of time, bounded by the Max Resp Time value derived from the Max Resp Code in the received Query message. A system may receive a variety of Queries on different interfaces and of different kinds (e.g., General Queries, Group-Specific Queries, and Group-and-Source-Specific Queries), each of which may require its own delayed response.

Before scheduling a response to a Query, the system must first consider previously scheduled pending responses and in many cases schedule a combined response. Therefore, the system must be able to maintain the following state:

- A timer per interface for scheduling responses to General Queries.
- A per-group and interface timer for scheduling responses to Group-Specific and Group-and-Source-Specific Queries.
- A per-group and interface list of sources to be reported in the response to a Group-and-Source-Specific Query.

When a new Query with the Router-Alert option arrives on an interface, provided the system has state to report, a delay for a response is randomly selected in the range (0, [Max Resp Time]) where Max Resp Time is derived from Max Resp Code in the received Query message. The following rules are then used to determine if a Report needs to be scheduled and the type of Report to schedule. The rules are considered in order and only the first matching rule is applied.

1. If there is a pending response to a previous General Query scheduled sooner than the selected delay, no additional response needs to be scheduled.

2. If the received Query is a General Query, the interface timer is used to schedule a response to the General Query after the selected delay. Any previously pending response to a General Query is canceled.
3. If the received Query is a Group-Specific Query or a Group-and-
Source-Specific Query and there is no pending response to a
previous Query for this group, then the group timer is used to
schedule a report. If the received Query is a Group-and-Source-
Specific Query, the list of queried sources is recorded to be used
when generating a response.

4. If there already is a pending response to a previous Query
scheduled for this group, and either the new Query is a Group-
Specific Query or the recorded source-list associated with the
group is empty, then the group source-list is cleared and a single
response is scheduled using the group timer. The new response is
scheduled to be sent at the earliest of the remaining time for the
pending report and the selected delay.

5. If the received Query is a Group-and-Source-Specific Query and
there is a pending response for this group with a non-empty
source-list, then the group source list is augmented to contain
the list of sources in the new Query and a single response is
scheduled using the group timer. The new response is scheduled to
be sent at the earliest of the remaining time for the pending
report and the selected delay.

When the timer in a pending response record expires, the system
transmits, on the associated interface, one or more Report messages
carrying one or more Current-State Records (see section 4.2.12), as
follows:

1. If the expired timer is the interface timer (i.e., it is a pending
response to a General Query), then one Current-State Record is
sent for each multicast address for which the specified interface
has reception state, as described in section 3.2. The Current-
State Record carries the multicast address and its associated
filter mode (MODE_IS_INCLUDE or MODE_IS_EXCLUDE) and source list.
Multiple Current-State Records are packed into individual Report
messages, to the extent possible.

This naive algorithm may result in bursts of packets when a system
is a member of a large number of groups. Instead of using a
single interface timer, implementations are recommended to spread
transmission of such Report messages over the interval (0, [Max
Resp Time]). Note that any such implementation MUST avoid the
"ack-implosion" problem, i.e., MUST NOT send a Report immediately
on reception of a General Query.
2. If the expired timer is a group timer and the list of recorded sources for the that group is empty (i.e., it is a pending response to a Group-Specific Query), then if and only if the interface has reception state for that group address, a single Current-State Record is sent for that address. The Current-State Record carries the multicast address and its associated filter mode (MODE_IS_INCLUDE or MODE_IS_EXCLUDE) and source list.

3. If the expired timer is a group timer and the list of recorded sources for that group is non-empty (i.e., it is a pending response to a Group-and-Source-Specific Query), then if and only if the interface has reception state for that group address, the contents of the responding Current-State Record is determined from the interface state and the pending response record, as specified in the following table:

<table>
<thead>
<tr>
<th>interface state</th>
<th>set of sources in the pending response record</th>
<th>Current-State Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDE (A)</td>
<td>B</td>
<td>IS_IN (A*B)</td>
</tr>
<tr>
<td>EXCLUDE (A)</td>
<td>B</td>
<td>IS_IN (B-A)</td>
</tr>
</tbody>
</table>

If the resulting Current-State Record has an empty set of source addresses, then no response is sent.

Finally, after any required Report messages have been generated, the source lists associated with any reported groups are cleared.

6. Description of the Protocol for Multicast Routers

The purpose of IGMP is to enable each multicast router to learn, for each of its directly attached networks, which multicast addresses are of interest to the systems attached to those networks. IGMP version 3 adds the capability for a multicast router to also learn which *sources* are of interest to neighboring systems, for packets sent to any particular multicast address. The information gathered by IGMP is provided to whichever multicast routing protocol is being used by the router, in order to ensure that multicast packets are delivered to all networks where there are interested receivers.

This section describes the part of IGMPv3 that is performed by multicast routers. Multicast routers may also themselves become members of multicast groups, and therefore also perform the group member part of IGMPv3, described in section 5.
A multicast router performs the protocol described in this section over each of its directly-attached networks. If a multicast router has more than one interface to the same network, it only needs to operate this protocol over one of those interfaces. On each interface over which this protocol is being run, the router MUST enable reception of multicast address 224.0.0.22, from all sources (and MUST perform the group member part of IGMPv3 for that address on that interface).

Multicast routers need to know only that *at least one* system on an attached network is interested in packets to a particular multicast address from a particular source; a multicast router is not required to keep track of the interests of each individual neighboring system. (However, see Appendix A.2 point 1 for discussion.)

IGMPv3 is backward compatible with previous versions of the IGMP protocol. In order to remain backward compatible with older IGMP systems, IGMPv3 multicast routers MUST also implement versions 1 and 2 of the protocol (see section 7).

6.1. Conditions for IGMP Queries

Multicast routers send General Queries periodically to request group membership information from an attached network. These queries are used to build and refresh the group membership state of systems on attached networks. Systems respond to these queries by reporting their group membership state (and their desired set of sources) with Current-State Group Records in IGMPv3 Membership Reports.

As a member of a multicast group, a system may express interest in receiving or not receiving traffic from particular sources. As the desired reception state of a system changes, it reports these changes using Filter-Mode-Change Records or Source-List-Change Records. These records indicate an explicit state change in a group at a system in either the group record's source list or its filter-mode. When a group membership is terminated at a system or traffic from a particular source is no longer desired, a multicast router must query for other members of the group or listeners of the source before deleting the group (or source) and pruning its traffic.

To enable all systems on a network to respond to changes in group membership, multicast routers send specific queries. A Group-Specific Query is sent to verify there are no systems that desire reception of the specified group or to "rebuild" the desired reception state for a particular group. Group-Specific Queries are sent when a router receives a State-Change record indicating a system is leaving a group.
A Group-and-Source Specific Query is used to verify there are no systems on a network which desire to receive traffic from a set of sources. Group-and-Source Specific Queries list sources for a particular group which have been requested to no longer be forwarded. This query is sent by a multicast router to learn if any systems desire reception of packets to the specified group address from the specified source addresses. Group-and-Source Specific Queries are only sent in response to State-Change Records and never in response to Current-State Records. Section 4.1.11 describes each query in more detail.

6.2. IGMP State Maintained by Multicast Routers

Multicast routers implementing IGMPv3 keep state per group per attached network. This group state consists of a filter-mode, a list of sources, and various timers. For each attached network running IGMP, a multicast router records the desired reception state for that network. That state conceptually consists of a set of records of the form:

(multicast address, group timer, filter-mode, (source records))

Each source record is of the form:

(source address, source timer)

If all sources within a given group are desired, an empty source record list is kept with filter-mode set to EXCLUDE. This means hosts on this network want all sources for this group to be forwarded. This is the IGMPv3 equivalent to a IGMPv1 or IGMPv2 group join.

6.2.1. Definition of Router Filter-Mode

To reduce internal state, IGMPv3 routers keep a filter-mode per group per attached network. This filter-mode is used to condense the total desired reception state of a group to a minimum set such that all systems’ memberships are satisfied. This filter-mode may change in response to the reception of particular types of group records or when certain timer conditions occur. In the following sections, we use the term "router filter-mode" to refer to the filter-mode of a particular group within a router. Section 6.4 describes the changes of a router filter-mode per group record received.
Conceptually, when a group record is received, the router filter-mode for that group is updated to cover all the requested sources using the least amount of state. As a rule, once a group record with a filter-mode of EXCLUDE is received, the router filter-mode for that group will be EXCLUDE.

When a router filter-mode for a group is EXCLUDE, the source record list contains two types of sources. The first type is the set which represents conflicts in the desired reception state; this set must be forwarded by some router on the network. The second type is the set of sources which hosts have requested to not be forwarded. Appendix A describes the reasons for keeping this second set when in EXCLUDE mode.

When a router filter-mode for a group is INCLUDE, the source record list is the list of sources desired for the group. This is the total desired set of sources for that group. Each source in the source record list must be forwarded by some router on the network.

Because a reported group record with a filter-mode of EXCLUDE will cause a router to transition its filter-mode for that group to EXCLUDE, a mechanism for transitioning a router’s filter-mode back to INCLUDE must exist. If all systems with a group record in EXCLUDE filter-mode cease reporting, it is desirable for the router filter-mode for that group to transition back to INCLUDE mode. This transition occurs when the group timer expires and is explained in detail in section 6.5.

6.2.2. Definition of Group Timers

The group timer is only used when a group is in EXCLUDE mode and it represents the time for the *filter-mode* of the group to expire and switch to INCLUDE mode. We define a group timer as a decrementing timer with a lower bound of zero kept per group per attached network. Group timers are updated according to the types of group records received.

A group timer expiring when a router filter-mode for the group is EXCLUDE means there are no listeners on the attached network in EXCLUDE mode. At this point, a router will transition to INCLUDE filter-mode. Section 6.5 describes the actions taken when a group timer expires while in EXCLUDE mode.

The following table summarizes the role of the group timer. Section 6.4 describes the details of setting the group timer per type of group record received.
<table>
<thead>
<tr>
<th>Filter-Mode</th>
<th>Group Timer Value</th>
<th>Actions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDE</td>
<td>Timer >= 0</td>
<td>All members in INCLUDE mode.</td>
</tr>
<tr>
<td>EXCLUDE</td>
<td>Timer > 0</td>
<td>At least one member in EXCLUDE mode.</td>
</tr>
<tr>
<td>EXCLUDE</td>
<td>Timer == 0</td>
<td>No more listeners to group. If all source timers have expired then delete Group Record. If there are still source record timers running, switch to INCLUDE filter-mode using those source records with running timers as the INCLUDE source record state.</td>
</tr>
</tbody>
</table>

6.2.3. Definition of Source Timers

A source timer is kept per source record and is a decrementing timer with a lower bound of zero. Source timers are updated according to the type and filter-mode of the group record received. Source timers are always updated (for a particular group) whenever the source is present in a received record for that group. Section 6.4 describes the setting of source timers per type of group records received.

A source record with a running timer with a router filter-mode for the group of INCLUDE means that there is currently one or more systems (in INCLUDE filter-mode) which desire to receive that source. If a source timer expires with a router filter-mode for the group of INCLUDE, the router concludes that traffic from this particular source is no longer desired on the attached network, and deletes the associated source record.

Source timers are treated differently when a router filter-mode for a group is EXCLUDE. If a source record has a running timer with a router filter-mode for the group of EXCLUDE, it means that at least one system desires the source. It should therefore be forwarded by a router on the network. Appendix A describes the reasons for keeping state for sources that have been requested to be forwarded while in EXCLUDE state.
If a source timer expires with a router filter-mode for the group of EXCLUDE, the router informs the routing protocol that there is no longer a receiver on the network interested in traffic from this source.

When a router filter-mode for a group is EXCLUDE, source records are only deleted when the group timer expires. Section 6.3 describes the actions that should be taken dependent upon the value of a source timer.

6.3. IGMPv3 Source-Specific Forwarding Rules

When a multicast router receives a datagram from a source destined to a particular group, a decision has to be made whether to forward the datagram onto an attached network or not. The multicast routing protocol in use is in charge of this decision, and should use the IGMPv3 information to ensure that all sources/groups desired on a subnetwork are forwarded to that subnetwork. IGMPv3 information does not override multicast routing information; for example, if the IGMPv3 filter-mode group for G is EXCLUDE, a router may still forward packets for excluded sources to a transit subnet.

To summarize, the following table describes the forwarding suggestions made by IGMP to the routing protocol for traffic originating from a source destined to a group. It also summarizes the actions taken upon the expiration of a source timer based on the router filter-mode of the group.

<table>
<thead>
<tr>
<th>Group Filter-Mode</th>
<th>Source Timer Value</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDE</td>
<td>TIMER > 0</td>
<td>Suggest to forward traffic from source</td>
</tr>
<tr>
<td>INCLUDE</td>
<td>TIMER == 0</td>
<td>Suggest to stop forwarding traffic from source and remove source record. If there are no more source records for the group, delete group record.</td>
</tr>
<tr>
<td>INCLUDE</td>
<td>No Source Elements</td>
<td>Suggest to not forward source</td>
</tr>
<tr>
<td>EXCLUDE</td>
<td>TIMER > 0</td>
<td>Suggest to forward traffic from source</td>
</tr>
</tbody>
</table>
6.4. Action on Reception of Reports

6.4.1. Reception of Current-State Records

When receiving Current-State Records, a router updates both its group and source timers. In some circumstances, the reception of a type of group record will cause the router filter-mode for that group to change. The table below describes the actions, with respect to state and timers that occur to a router's state upon reception of Current-State Records.

The following notation is used to describe the updating of source timers. The notation \(\{ A, B \} \) will be used to represent the total number of sources for a particular group, where

- \(A \) = set of source records whose source timers > 0 (Sources that at least one host has requested to be forwarded)
- \(B \) = set of source records whose source timers = 0 (Sources that IGMP will suggest to the routing protocol not to forward)

Note that there will only be two sets when a router’s filter-mode for a group is EXCLUDE. When a router’s filter-mode for a group is INCLUDE, a single set is used to describe the set of sources requested to be forwarded (e.g., simply \(A \)).

In the following tables, abbreviations are used for several variables (all of which are described in detail in section 8). The variable GMI is an abbreviation for the Group Membership Interval, which is the time in which group memberships will time out. The variable LMQT is an abbreviation for the Last Member Query Time, which is the total time spent after Last Member Query Count retransmissions. LMQT represents the "leave latency", or the difference between the transmission of a membership change and the change in the information given to the routing protocol.

Within the "Actions" section of the router state tables, we use the notation ‘A=J’, which means that the set A of source records should have their source timers set to value J. ‘Delete A’ means that the set A of source records should be deleted. ‘Group Timer=J’ means that the Group Timer for the group should be set to value J.

<table>
<thead>
<tr>
<th>Filter Mode</th>
<th>Source Timers</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCLUDE</td>
<td>TIMER == 0</td>
<td>Suggest to not forward traffic from source (DO NOT remove record)</td>
</tr>
<tr>
<td>EXCLUDE</td>
<td>No Source Elements</td>
<td>Suggest to forward traffic from source</td>
</tr>
</tbody>
</table>

Cain, et. al. Standards Track [Page 30]
6.4.2. Reception of Filter-Mode-Change and Source-List-Change Records

When a change in the global state of a group occurs in a system, the system sends either a Source-List-Change Record or a Filter-Mode-Change Record for that group. As with Current-State Records, routers must act upon these records and possibly change their own state to reflect the new desired membership state of the network.

Routers must query sources that are requested to be no longer forwarded to a group. When a router queries or receives a query for a specific set of sources, it lowers its source timers for those sources to a small interval of Last Member Query Time seconds. If group records are received in response to the queries which express interest in receiving traffic from the queried sources, the corresponding timers are updated.

Similarly, when a router queries a specific group, it lowers its group timer for that group to a small interval of Last Member Query Time seconds. If any group records expressing EXCLUDE mode interest in the group are received within the interval, the group timer for the group is updated and the suggestion to the routing protocol to forward the group stands without any interruption.

During a query period (i.e., Last Member Query Time seconds), the IGMP component in the router continues to suggest to the routing protocol that it forwards traffic from the groups or sources that it is querying. It is not until after Last Member Query Time seconds without receiving a record expressing interest in the queried group or sources that the router may prune the group or sources from the network.
The following table describes the changes in group state and the action(s) taken when receiving either Filter-Mode-Change or Source-List-Change Records. This table also describes the queries which are sent by the querier when a particular report is received.

We use the following notation for describing the queries which are sent. We use the notation ‘Q(G)’ to describe a Group-Specific Query to G. We use the notation ‘Q(G,A)’ to describe a Group-and-Source Specific Query to G with source-list A. If source-list A is null as a result of the action (e.g., A*B) then no query is sent as a result of the operation.

In order to maintain protocol robustness, queries sent by actions in the table below need to be transmitted [Last Member Query Count] times, once every [Last Member Query Interval].

If while scheduling new queries, there are already pending queries to be retransmitted for the same group, the new and pending queries have to be merged. In addition, received host reports for a group with pending queries may affect the contents of those queries. Section 6.6.3 describes the process of building and maintaining the state of pending queries.

<table>
<thead>
<tr>
<th>Router State</th>
<th>Report Rec’d</th>
<th>New Router State</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCLUDE (A)</td>
<td>ALLOW (B)</td>
<td>INCLUDE (A+B)</td>
<td>(B)=GMI</td>
</tr>
<tr>
<td>INCLUDE (A)</td>
<td>BLOCK (B)</td>
<td>INCLUDE (A)</td>
<td>Send Q(G,A*B)</td>
</tr>
<tr>
<td>INCLUDE (A)</td>
<td>TO_EX (B)</td>
<td>EXCLUDE (A*B,B-A)</td>
<td>(B-A)=0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delete (A-B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Send Q(G,A*B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group Timer=GMI</td>
</tr>
<tr>
<td>INCLUDE (A)</td>
<td>TO_IN (B)</td>
<td>INCLUDE (A+B)</td>
<td>(B)=GMI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Send Q(G,A-B)</td>
</tr>
<tr>
<td>EXCLUDE (X,Y)</td>
<td>ALLOW (A)</td>
<td>EXCLUDE (X+A,Y-A)</td>
<td>(A)=GMI</td>
</tr>
<tr>
<td>EXCLUDE (X,Y)</td>
<td>BLOCK (A)</td>
<td>EXCLUDE (X+(A-Y),Y)</td>
<td>(A-X-Y)=Group Timer</td>
</tr>
<tr>
<td>EXCLUDE (X,Y)</td>
<td>TO_EX (A)</td>
<td>EXCLUDE (A-Y,Y*A)</td>
<td>(A-X-Y)=Group Timer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Delete (Y-A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Send Q(G,A-Y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Group Timer=GMI</td>
</tr>
</tbody>
</table>
6.5. Switching Router Filter-Modes

The group timer is used as a mechanism for transitioning the router filter-mode from EXCLUDE to INCLUDE.

When a group timer expires with a router filter-mode of EXCLUDE, a router assumes that there are no systems with a *filter-mode* of EXCLUDE present on the attached network. When a router’s filter-mode for a group is EXCLUDE and the group timer expires, the router filter-mode for the group transitions to INCLUDE.

A router uses source records with running source timers as its state for the switch to a filter-mode of INCLUDE. If there are any source records with source timers greater than zero (i.e., requested to be forwarded), a router switches to filter-mode of INCLUDE using those source records. Source records whose timers are zero (from the previous EXCLUDE mode) are deleted.

For example, if a router’s state for a group is EXCLUDE(X,Y) and the group timer expires for that group, the router switches to filter-mode of INCLUDE with state INCLUDE(X).

6.6. Action on Reception of Queries

6.6.1. Timer Updates

When a router sends or receives a query with a clear Suppress Router-Side Processing flag, it must update its timers to reflect the correct timeout values for the group or sources being queried. The following table describes the timer actions when sending or receiving a Group-Specific or Group-and-Source Specific Query with the Suppress Router-Side Processing flag not set.

<table>
<thead>
<tr>
<th>Query</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q(G,A)</td>
<td>Source Timer for sources in A are lowered to LMQT</td>
</tr>
<tr>
<td>Q(G)</td>
<td>Group Timer is lowered to LMQT</td>
</tr>
</tbody>
</table>

When a router sends or receives a query with the Suppress Router-Side Processing flag set, it will not update its timers.
6.6.2. Querier Election

IGMPv3 elects a single querier per subnet using the same querier election mechanism as IGMPv2, namely by IP address. When a router receives a query with a lower IP address, it sets the Other-Querier-Present timer to Other Querier Present Interval and ceases to send queries on the network if it was the previously elected querier. After its Other-Querier-Present timer expires, it should begin sending General Queries.

If a router receives an older version query, it MUST use the oldest version of IGMP on the network. For a detailed description of compatibility issues between IGMP versions see section 7.

6.6.3. Building and Sending Specific Queries

6.6.3.1. Building and Sending Group Specific Queries

When a table action "Send Q(G)" is encountered, then the group timer must be lowered to LMQT. The router must then immediately send a group specific query as well as schedule [Last Member Query Count - 1] query retransmissions to be sent every [Last Member Query Interval] over [Last Member Query Time].

When transmitting a group specific query, if the group timer is larger than LMQT, the "Suppress Router-Side Processing" bit is set in the query message.

6.6.3.2. Building and Sending Group and Source Specific Queries

When a table action "Send Q(G,X)" is encountered by a querier in the table in section 6.4.2, the following actions must be performed for each of the sources in X of group G, with source timer larger than LMQT:

- Set number of retransmissions for each source to [Last Member Query Count].
- Lower source timer to LMQT.

The router must then immediately send a group and source specific query as well as schedule [Last Member Query Count - 1] query retransmissions to be sent every [Last Member Query Interval] over [Last Member Query Time]. The contents of these queries are calculated as follows.
When building a group and source specific query for a group G, two separate query messages are sent for the group. The first one has the "Suppress Router-Side Processing" bit set and contains all the sources with retransmission state and timers greater than LMQT. The second has the "Suppress Router-Side Processing" bit clear and contains all the sources with retransmission state and timers lower or equal to LMQT. If either of the two calculated messages does not contain any sources, then its transmission is suppressed.

Note: If a group specific query is scheduled to be transmitted at the same time as a group and source specific query for the same group, then transmission of the group and source specific message with the "Suppress Router-Side Processing" bit set may be suppressed.

7. Interoperation With Older Versions of IGMP

IGMP version 3 hosts and routers interoperate with hosts and routers that have not yet been upgraded to IGMPv3. This compatibility is maintained by hosts and routers taking appropriate actions depending on the versions of IGMP operating on hosts and routers within a network.

7.1. Query Version Distinctions

The IGMP version of a Membership Query message is determined as follows:

- IGMPv1 Query: length = 8 octets AND Max Resp Code field is zero
- IGMPv2 Query: length = 8 octets AND Max Resp Code field is non-zero
- IGMPv3 Query: length >= 12 octets

Query messages that do not match any of the above conditions (e.g., a Query of length 10 octets) MUST be silently ignored.

7.2. Group Member Behavior

7.2.1. In the Presence of Older Version Queriers

In order to be compatible with older version routers, IGMPv3 hosts MUST operate in version 1 and version 2 compatibility modes. IGMPv3 hosts MUST keep state per local interface regarding the compatibility mode of each attached network. A host’s compatibility mode is
determined from the Host Compatibility Mode variable which can be in one of three states: IGMPv1, IGMPv2 or IGMPv3. This variable is kept per interface and is dependent on the version of General Queries heard on that interface as well as the Older Version Querier Present timers for the interface.

In order to switch gracefully between versions of IGMP, hosts keep both an IGMPv1 Querier Present timer and an IGMPv2 Querier Present timer per interface. IGMPv1 Querier Present is set to Older Version Querier Present Timeout seconds whenever an IGMPv1 Membership Query is received. IGMPv2 Querier Present is set to Older Version Querier Present Timeout seconds whenever an IGMPv2 General Query is received.

The Host Compatibility Mode of an interface changes whenever an older version query (than the current compatibility mode) is heard or when certain timer conditions occur. When the IGMPv1 Querier Present timer expires, a host switches to Host Compatibility mode of IGMPv2 if it has a running IGMPv2 Querier Present timer. If it does not have a running IGMPv2 Querier Present timer then it switches to Host Compatibility of IGMPv3. When the IGMPv2 Querier Present timer expires, a host switches to Host Compatibility mode of IGMPv3.

The Host Compatibility Mode variable is based on whether an older version General query was heard in the last Older Version Querier Present Timeout seconds. The Host Compatibility Mode is set depending on the following:

<table>
<thead>
<tr>
<th>Host Compatibility Mode</th>
<th>Timer State</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMPv3 (default)</td>
<td>IGMPv2 Querier Present not running and IGMPv1 Querier Present not running</td>
</tr>
<tr>
<td>IGMPv2</td>
<td>IGMPv2 Querier Present running and IGMPv1 Querier Present not running</td>
</tr>
<tr>
<td>IGMPv1</td>
<td>IGMPv1 Querier Present running</td>
</tr>
</tbody>
</table>

If a host receives a query which causes its Querier Present timers to be updated and corresponding its compatibility mode, it should switch compatibility modes immediately.

When Host Compatibility Mode is IGMPv3, a host acts using the IGMPv3 protocol on that interface. When Host Compatibility Mode is IGMPv2, a host acts in IGMPv2 compatibility mode, using only the IGMPv2 protocol, on that interface. When Host Compatibility Mode is IGMPv1, a host acts in IGMPv1 compatibility mode, using only the IGMPv1 protocol on that interface.
An IGMPv1 router will send General Queries with the Max Resp Code set to 0. This MUST be interpreted as a value of 100 (10 seconds).

An IGMPv2 router will send General Queries with the Max Resp Code set to the desired Max Resp Time, i.e., the full range of this field is linear and the exponential algorithm described in section 4.1.1 is not used.

Whenever a host changes its compatibility mode, it cancels all its pending response and retransmission timers.

7.2.2. In the Presence of Older Version Group Members

An IGMPv3 host may be placed on a network where there are hosts that have not yet been upgraded to IGMPv3. A host MAY allow its IGMPv3 Membership Record to be suppressed by either a Version 1 Membership Report, or a Version 2 Membership Report.

7.3. Multicast Router Behavior

7.3.1. In the Presence of Older Version Queriers

IGMPv3 routers may be placed on a network where at least one router on the network has not yet been upgraded to IGMPv3. The following requirements apply:

o If any older versions of IGMP are present on routers, the querier MUST use the lowest version of IGMP present on the network. This must be administratively assured; routers that desire to be compatible with IGMPv1 and IGMPv2 MUST have a configuration option to act in IGMPv1 or IGMPv2 compatibility modes. When in IGMPv1 mode, routers MUST send Periodic Queries with a Max Resp Code of 0 and truncated at the Group Address field (i.e., 8 bytes long), and MUST ignore Leave Group messages. They SHOULD also warn about receiving an IGMPv2 or IGMPv3 query, although such warnings MUST be rate-limited. When in IGMPv2 mode, routers MUST send Periodic Queries truncated at the Group Address field (i.e., 8 bytes long), and SHOULD also warn about receiving an IGMPv3 query (such warnings MUST be rate-limited). They also MUST fill in the Max Resp Time in the Max Resp Code field, i.e., the exponential algorithm described in section 4.1.1 is not used.

o If a router is not explicitly configured to use IGMPv1 or IGMPv2 and hears an IGMPv1 Query or IGMPv2 General Query, it SHOULD log a warning. These warnings MUST be rate-limited.
7.3.2. In the Presence of Older Version Group Members

IGMPv3 routers may be placed on a network where there are hosts that have not yet been upgraded to IGMPv3. In order to be compatible with older version hosts, IGMPv3 routers MUST operate in version 1 and version 2 compatibility modes. IGMPv3 routers keep a compatibility mode per group record. A group’s compatibility mode is determined from the Group Compatibility Mode variable which can be in one of three states: IGMPv1, IGMPv2 or IGMPv3. This variable is kept per group record and is dependent on the version of Membership Reports heard for that group as well as the Older Version Host Present timer for the group.

In order to switch gracefully between versions of IGMP, routers keep an IGMPv1 Host Present timer and an IGMPv2 Host Present timer per group record. The IGMPv1 Host Present timer is set to Older Version Host Present Timeout seconds whenever an IGMPv1 Membership Report is received. The IGMPv2 Host Present timer is set to Older Version Host Present Timeout seconds whenever an IGMPv2 Membership Report is received.

The Group Compatibility Mode of a group record changes whenever an older version report (than the current compatibility mode) is heard or when certain timer conditions occur. When the IGMPv1 Host Present timer expires, a router switches to Group Compatibility mode of IGMPv2 if it has a running IGMPv2 Host Present timer. If it does not have a running IGMPv2 Host Present timer then it switches to Group Compatibility of IGMPv3. When the IGMPv2 Host Present timer expires and the IGMPv1 Host Present timer is not running, a router switches to Group Compatibility mode of IGMPv3. Note that when a group switches back to IGMPv3 mode, it takes some time to regain source-specific state information. Source-specific information will be learned during the next General Query, but sources that should be blocked will not be blocked until [Group Membership Interval] after that.

The Group Compatibility Mode variable is based on whether an older version report was heard in the last Older Version Host Present Timeout seconds. The Group Compatibility Mode is set depending on the following:
Group Compatibility Mode

<table>
<thead>
<tr>
<th>Group Compatibility Mode</th>
<th>Timer State</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMPv3 (default)</td>
<td>IGMPv2 Host Present not running and IGMPv1 Host Present not running</td>
</tr>
<tr>
<td>IGMPv2</td>
<td>IGMPv2 Host Present running and IGMPv1 Host Present not running</td>
</tr>
<tr>
<td>IGMPv1</td>
<td>IGMPv1 Host Present running</td>
</tr>
</tbody>
</table>

If a router receives a report which causes its older Host Present timers to be updated and correspondingly its compatibility mode, it **SHOULD** switch compatibility modes immediately.

When Group Compatibility Mode is IGMPv3, a router acts using the IGMPv3 protocol for that group.

When Group Compatibility Mode is IGMPv2, a router internally translates the following IGMPv2 messages for that group to their IGMPv3 equivalents:

<table>
<thead>
<tr>
<th>IGMPv2 Message</th>
<th>IGMPv3 Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
<td>IS_EX({})</td>
</tr>
<tr>
<td>Leave</td>
<td>TO_IN({})</td>
</tr>
</tbody>
</table>

IGMPv3 BLOCK messages are ignored, as are source-lists in TO_EX() messages (i.e., any TO_EX() message is treated as TO_EX({})).

When Group Compatibility Mode is IGMPv1, a router internally translates the following IGMPv1 and IGMPv2 messages for that group to their IGMPv3 equivalents:

<table>
<thead>
<tr>
<th>IGMPv1/2 Message</th>
<th>IGMPv3 Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1 Report</td>
<td>IS_EX({})</td>
</tr>
<tr>
<td>v2 Report</td>
<td>IS_EX({})</td>
</tr>
</tbody>
</table>

In addition to ignoring IGMPv3 BLOCK messages and source-lists in TO_EX() messages as in IGMPv2 Group Compatibility Mode, IGMPv2 Leave messages and IGMPv3 TO_IN() messages are also ignored.
8. List of Timers, Counters and Their Default Values

Most of these timers are configurable. If non-default settings are used, they MUST be consistent among all systems on a single link. Note that parentheses are used to group expressions to make the algebra clear.

8.1. Robustness Variable

The Robustness Variable allows tuning for the expected packet loss on a network. If a network is expected to be lossy, the Robustness Variable may be increased. IGMP is robust to \((\text{Robustness Variable} - 1)\) packet losses. The Robustness Variable MUST NOT be zero, and SHOULD NOT be one. Default: 2

8.2. Query Interval

The Query Interval is the interval between General Queries sent by the Querier. Default: 125 seconds.

By varying the [Query Interval], an administrator may tune the number of IGMP messages on the network; larger values cause IGMP Queries to be sent less often.

8.3. Query Response Interval

The Max Response Time used to calculate the Max Resp Code inserted into the periodic General Queries. Default: 100 (10 seconds)

By varying the [Query Response Interval], an administrator may tune the burstiness of IGMP messages on the network; larger values make the traffic less bursty, as host responses are spread out over a larger interval. The number of seconds represented by the [Query Response Interval] must be less than the [Query Interval].

8.4. Group Membership Interval

The Group Membership Interval is the amount of time that must pass before a multicast router decides there are no more members of a group or a particular source on a network.

This value MUST be \((\text{the Robustness Variable} \times \text{the Query Interval})\) plus (one Query Response Interval).
8.5. Other Querier Present Interval

The Other Querier Present Interval is the length of time that must pass before a multicast router decides that there is no longer another multicast router which should be the querier. This value MUST be \((\text{the Robustness Variable} \times \text{the Query Interval})\) plus (one half of one Query Response Interval).

8.6. Startup Query Interval

The Startup Query Interval is the interval between General Queries sent by a Querier on startup. Default: 1/4 the Query Interval.

8.7. Startup Query Count

The Startup Query Count is the number of Queries sent out on startup, separated by the Startup Query Interval. Default: the Robustness Variable.

8.8. Last Member Query Interval

The Last Member Query Interval is the Max Response Time used to calculate the Max Resp Code inserted into Group-Specific Queries sent in response to Leave Group messages. It is also the Max Response Time used in calculating the Max Resp Code for Group-and-Source-Specific Query messages. Default: 10 (1 second)

Note that for values of LMQI greater than 12.8 seconds, a limited set of values can be represented, corresponding to sequential values of Max Resp Code. When converting a configured time to a Max Resp Code value, it is recommended to use the exact value if possible, or the next lower value if the requested value is not exactly representable.

This value may be tuned to modify the "leave latency" of the network. A reduced value results in reduced time to detect the loss of the last member of a group or source.

8.9. Last Member Query Count

The Last Member Query Count is the number of Group-Specific Queries sent before the router assumes there are no local members. The Last Member Query Count is also the number of Group-and-Source-Specific Queries sent before the router assumes there are no listeners for a particular source. Default: the Robustness Variable.
8.10. Last Member Query Time

The Last Member Query Time is the time value represented by the Last Member Query Interval, multiplied by the Last Member Query Count. It is not a tunable value, but may be tuned by changing its components.

8.11. Unsolicited Report Interval

The Unsolicited Report Interval is the time between repetitions of a host’s initial report of membership in a group. Default: 1 second.

8.12. Older Version Querier Present Timeout

The Older Version Querier Interval is the time-out for transitioning a host back to IGMPv3 mode once an older version query is heard. When an older version query is received, hosts set their Older Version Querier Present Timer to Older Version Querier Interval.

This value MUST be ((the Robustness Variable) times (the Query Interval in the last Query received)) plus (one Query Response Interval).

8.13. Older Host Present Interval

The Older Host Present Interval is the time-out for transitioning a group back to IGMPv3 mode once an older version report is sent for that group. When an older version report is received, routers set their Older Host Present Timer to Older Host Present Interval.

This value MUST be ((the Robustness Variable) times (the Query Interval)) plus (one Query Response Interval).

8.14. Configuring Timers

This section is meant to provide advice to network administrators on how to tune these settings to their network. Ambitious router implementations might tune these settings dynamically based upon changing characteristics of the network.

8.14.1. Robustness Variable

The Robustness Variable tunes IGMP to expected losses on a link. IGMPv3 is robust to (Robustness Variable - 1) packet losses, e.g., if the Robustness Variable is set to the default value of 2, IGMPv3 is robust to a single packet loss but may operate imperfectly if more
losses occur. On lossy subnetworks, the Robustness Variable should be increased to allow for the expected level of packet loss. However, increasing the Robustness Variable increases the leave latency of the subnetwork. (The leave latency is the time between when the last member stops listening to a source or group and when the traffic stops flowing.)

8.14.2. Query Interval

The overall level of periodic IGMP traffic is inversely proportional to the Query Interval. A longer Query Interval results in a lower overall level of IGMP traffic. The Query Interval MUST be equal to or longer than the Max Response Time inserted in General Query messages.

8.14.3. Max Response Time

The burstiness of IGMP traffic is inversely proportional to the Max Response Time. A longer Max Response Time will spread Report messages over a longer interval. However, a longer Max Response Time in Group-Specific and Source-and-Group-Specific Queries extends the leave latency. (The leave latency is the time between when the last member stops listening to a source or group and when the traffic stops flowing.) The expected rate of Report messages can be calculated by dividing the expected number of Reporters by the Max Response Time. The Max Response Time may be dynamically calculated per Query by using the expected number of Reporters for that Query as follows:

<table>
<thead>
<tr>
<th>Query Type</th>
<th>Expected number of Reporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Query</td>
<td>All systems on subnetwork</td>
</tr>
<tr>
<td>Group-Specific Query</td>
<td>All systems that had expressed interest in the group on the subnetwork</td>
</tr>
<tr>
<td>Source-and-Group-Specific Query</td>
<td>All systems on the subnetwork that had expressed interest in the source and group</td>
</tr>
</tbody>
</table>

A router is not required to calculate these populations or tune the Max Response Time dynamically; these are simply guidelines.

9. Security Considerations

We consider the ramifications of a forged message of each type, and describe the usage of IPSEC AH to authenticate messages if desired.
9.1. Query Message

A forged Query message from a machine with a lower IP address than the current Querier will cause Querier duties to be assigned to the forger. If the forger then sends no more Query messages, other routers’ Other Querier Present timer will time out and one will resume the role of Querier. During this time, if the forger ignores Leave Messages, traffic might flow to groups with no members for up to [Group Membership Interval].

A DoS attack on a host could be staged through forged Group-and-Source-Specific Queries. The attacker can find out about membership of a specific host with a general query. After that it could send a large number of Group-and-Source-Specific queries, each with a large source list and the Maximum Response Time set to a large value. The host will have to store and maintain the sources specified in all of those queries for as long as it takes to send the delayed response. This would consume both memory and CPU cycles in order to augment the recorded sources with the source lists included in the successive queries.

To protect against such a DoS attack, a host stack implementation could restrict the number of Group-and-Source-Specific Queries per group membership within this interval, and/or record only a limited number of sources.

Forged Query messages from the local network can be easily traced. There are three measures necessary to defend against externally forged Queries:

- Routers SHOULD NOT forward Queries. This is easier for a router to accomplish if the Query carries the Router-Alert option.
- Hosts SHOULD ignore v2 or v3 Queries without the Router-Alert option.
- Hosts SHOULD ignore v1, v2 or v3 General Queries sent to a multicast address other than 224.0.0.1, the all-systems address.

9.2. Current-State Report messages

A forged Report message may cause multicast routers to think there are members of a group on a network when there are not. Forged Report messages from the local network are meaningless, since joining a group on a host is generally an unprivileged operation, so a local user may trivially gain the same result without forging any messages. Forged Report messages from external sources are more troublesome; there are two defenses against externally forged Reports:
o Ignore the Report if you cannot identify the source address of the packet as belonging to a network assigned to the interface on which the packet was received. This solution means that Reports sent by mobile hosts without addresses on the local network will be ignored. Report messages with a source address of 0.0.0.0 SHOULD be accepted on any interface.

o Ignore Report messages without Router Alert options [RFC-2113], and require that routers not forward Report messages. (The requirement is not a requirement of generalized filtering in the forwarding path, since the packets already have Router Alert options in them.) This solution breaks backwards compatibility with implementations of IGMPv1 or earlier versions of IGMPv2 which did not require Router Alert.

A forged Version 1 Report Message may put a router into "version 1 members present" state for a particular group, meaning that the router will ignore Leave messages. This can cause traffic to flow to groups with no members for up to [Group Membership Interval]. This can be solved by providing routers with a configuration switch to ignore Version 1 messages completely. This breaks automatic compatibility with Version 1 hosts, so should only be used in situations where "fast leave" is critical.

A forged Version 2 Report Message may put a router into "version 2 members present" state for a particular group, meaning that the router will ignore IGMPv3 source-specific state messages. This can cause traffic to flow from unwanted sources for up to [Group Membership Interval]. This can be solved by providing routers with a configuration switch to ignore Version 2 messages completely. This breaks automatic compatibility with Version 2 hosts, so should only be used in situations where source include and exclude is critical.

9.3. State-Change Report Messages

A forged State-Change Report message will cause the Querier to send out Group-Specific or Source-and-Group-Specific Queries for the group in question. This causes extra processing on each router and on each member of the group, but can not cause loss of desired traffic. There are two defenses against externally forged State-Change Report messages:
o Ignore the State-Change Report message if you cannot identify the source address of the packet as belonging to a subnet assigned to the interface on which the packet was received. This solution means that State-Change Report messages sent by mobile hosts without addresses on the local subnet will be ignored. State-Change Report messages with a source address of 0.0.0.0 SHOULD be accepted on any interface.

o Ignore State-Change Report messages without Router Alert options [RFC-2113], and require that routers not forward State-Change Report messages. (The requirement is not a requirement of generalized filtering in the forwarding path, since the packets already have Router Alert options in them.)

9.4. IPSEC Usage

In addition to these measures, IPSEC in Authentication Header mode [AH] may be used to protect against remote attacks by ensuring that IGMPv3 messages came from a system on the LAN (or, more specifically, a system with the proper key). When using IPSEC, the messages sent to 224.0.0.1 and 224.0.0.22 should be authenticated using AH. When keying, there are two possibilities:

1. Use a symmetric signature algorithm with a single key for the LAN (or a key for each group). This allows validation that a packet was sent by a system with the key. This has the limitation that any system with the key can forge a message; it is not possible to authenticate the individual sender precisely. It also requires disabling IPSEC's Replay Protection.

2. When appropriate key management standards have been developed, use an asymmetric signature algorithm. All systems need to know the public key of all routers, and all routers need to know the public key of all systems. This requires a large amount of key management but has the advantage that senders can be authenticated individually so e.g., a host cannot forge a message that only routers should be allowed to send.

This solution only directly applies to Query and Leave messages in IGMPv1 and IGMPv2, since Reports are sent to the group being reported and it is not feasible to agree on a key for host-to-router communication for arbitrary multicast groups.
10. IANA Considerations

All IGMP types described in this document are already assigned in [IANA-REG].

11. Acknowledgments

We would like to thank Ran Atkinson, Luis Costa, Toerless Eckert, Dino Farinacci, Serge Fdida, Wilbert de Graaf, Sumit Gupta, Mark Handley, Bob Quinn, Michael Speer, Dave Thaler and Rolland Vida for comments and suggestions on this document.

Portions of the text of this document were copied from [RFC-1112] and [RFC-2236].

12. Normative References

13. Informative References

Appendix A. Design Rationale

A.1 The Need for State-Change Messages

IGMPv3 specifies two types of Membership Reports: Current-State and State Change. This section describes the rationale for the need for both these types of Reports.

Routers need to distinguish Membership Reports that were sent in response to Queries from those that were sent as a result of a change in interface state. Membership reports that are sent in response to Membership Queries are used mainly to refresh the existing state at the router; they typically do not cause transitions in state at the router. Membership Reports that are sent in response to changes in interface state require the router to take some action in response to the received report (see Section 6.4).

The inability to distinguish between the two types of reports would force a router to treat all Membership Reports as potential changes in state and could result in increased processing at the router as well as an increase in IGMP traffic on the network.

A.2 Host Suppression

In IGMPv1 and IGMPv2, a host would cancel sending a pending membership reports if a similar report was observed from another member on the network. In IGMPv3, this suppression of host membership reports has been removed. The following points explain the reasons behind this decision.

1. Routers may want to track per-host membership status on an interface. This allows routers to implement fast leaves (e.g., for layered multicast congestion control schemes) as well as track membership status for possible accounting purposes.

2. Membership Report suppression does not work well on bridged LANs. Many bridges and Layer2/Layer3 switches that implement IGMP snooping do not forward IGMP messages across LAN segments in order to prevent membership report suppression. Removing membership report suppression eases the job of these IGMP snooping devices.

3. By eliminating membership report suppression, hosts have fewer messages to process; this leads to a simpler state machine implementation.
4. In IGMPv3, a single membership report now bundles multiple multicast group records to decrease the number of packets sent. In comparison, the previous versions of IGMP required that each multicast group be reported in a separate message.

A.3 Switching Router Filter Modes from EXCLUDE to INCLUDE

If there exist hosts in both EXCLUDE and INCLUDE modes for a single multicast group in a network, the router must be in EXCLUDE mode as well (see section 6.2.1). In EXCLUDE mode, a router forwards traffic from all sources unless that source exists in the exclusion source list. If all hosts in EXCLUDE mode cease to exist, it would be desirable for the router to switch back to INCLUDE mode seamlessly without interrupting the flow of traffic to existing receivers.

One of the ways to accomplish this is for routers to keep track of all sources desired by hosts that are in INCLUDE mode even though the router itself is in EXCLUDE mode. If the group timer now expires in EXCLUDE mode, it implies that there are no hosts in EXCLUDE mode on the network (otherwise a membership report from that host would have refreshed the group timer). The router can then switch to INCLUDE mode seamlessly with the list of sources currently being forwarded in its source list.

Appendix B. Summary of Changes from IGMPv2

While the main additional feature of IGMPv3 is the addition of source filtering, the following is a summary of other changes from RFC 2236.

- State is maintained as Group + List-of-Sources, not simply Group as in IGMPv2.

- Interoperability with IGMPv1 and IGMPv2 systems is defined as operations on the IGMPv3 state.

- The IP Service Interface has changed to allow specification of source-lists.

- The Querier includes its Robustness Variable and Query Interval in Query packets to allow synchronization of these variables on non-Queriers.

- The Max Response Time in Query messages has an exponential range, changing the maximum from 25.5 seconds to about 53 minutes, for use on links with huge numbers of systems.

- Hosts retransmit state-change messages for increased robustness.
o Additional data sections are defined to allow later extensions.

o Report packets are sent to 224.0.0.22, to assist layer-2 switches in "snooping".

o Report packets can contain multiple group records, to allow reporting of full current state using fewer packets.

o Hosts no longer perform suppression, to simplify implementations and permit explicit membership tracking.

o New Suppress Router-Side Processing (S) flag in Query messages fixes robustness issues which were also present in IGMPv2.
Authors’ Addresses

Brad Cain
Cereva Networks

Steve Deering
Cisco Systems, Inc.
170 Tasman Drive
San Jose, CA 95134-1706
Phone: +1-408-527-8213
EMail: deering@cisco.com

Bill Fenner
AT&T Labs - Research
75 Willow Rd.
Menlo Park, CA 94025
Phone: +1-650-330-7893
EMail: fenner@research.att.com

Isidor Kouvelas
Cisco Systems, Inc.
170 Tasman Drive
San Jose, CA 95134-1706
Phone: +1-408-525-0727
EMail: kouvelas@cisco.com

Ajit Thyagarajan
Ericsson IP Infrastructure
Full Copyright Statement

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.